
hacs-pyscript
Release 1.5.0

Aug 25, 2023

Contents

1 Contents 3
1.1 Overview . 3
1.2 Installation . 4

1.2.1 Option 1: HACS . 4
1.2.2 Option 2: Manual . 4
1.2.3 Install Jupyter Kernel . 4

1.3 Configuration . 4
1.4 Tutorial . 5

1.4.1 Jupyter Tutorial . 5
1.4.2 Writing your first script . 5
1.4.3 An example using triggers . 6

1.5 Reference . 7
1.5.1 Configuration . 7
1.5.2 Reloading Scripts . 9
1.5.3 State Variables . 10
1.5.4 Calling services . 11
1.5.5 Firing events . 12
1.5.6 Function Trigger Decorators . 12
1.5.7 Other Function Decorators . 19
1.5.8 Functions . 22
1.5.9 Advanced Topics . 29

1.6 Contributing . 38
1.7 Releases and New Features . 38
1.8 Useful Links . 39

i

ii

hacs-pyscript, Release 1.5.0

This HACS custom integration for Home Assistant allows you to write Python functions and scripts that can implement
a wide range of automation, logic and triggers. State variables are bound to Python variables and services are callable
as Python functions, so it’s easy and concise to implement logic.

Contents 1

https://github.com/custom-components/pyscript/releases
https://github.com/custom-components/pyscript/blob/master/LICENSE
https://github.com/custom-components/hacs
https://github.com/craigbarratt

hacs-pyscript, Release 1.5.0

2 Contents

CHAPTER 1

Contents

1.1 Overview

This HACS custom integration allows you to write Python functions and scripts that can implement a wide range
of automation, logic and triggers. State variables are bound to Python variables and services are callable as Python
functions, so it’s easy and concise to implement logic.

Functions you write can be configured to be called as a service or run upon time, state-change or event triggers.
Functions can also call any service, fire events and set state variables. Functions can sleep or wait for additional
changes in state variables or events, without slowing or affecting other operations. You can think of these functions as
small programs that run in parallel, independently of each other, and they could be active for extended periods of time.

State, event and time triggers are specified by Python function decorators (the “@” lines immediately before each
function definition). A state trigger can be any Python expression using state variables - the trigger is evaluated only
when a state variable it references changes, and the trigger occurs when the expression is true or non-zero. A time
trigger could be a single event (eg: date and time), a repetitive event (eg: at a particular time each day or weekday,
daily relative to sunrise or sunset or any regular time period within an optional range) or using cron syntax (where
events occur periodically based on a concise specification of ranges of minutes, hours, days of week, days of month
and months). An event trigger specifies the event type, and an optional Python trigger test based on the event data that
runs the Python function if true.

Pyscript implements a Python interpreter using the ast parser output, in a fully async manner. That allows several
of the “magic” features to be implemented in a seamless Pythonic manner, such as binding of variables to states and
functions to services. Pyscript supports imports, although by default the valid import list is restricted for security
reasons (there is a configuration option allow_all_imports to allow all imports). Pyscript supports almost all
Python language features except generators, yield, and defining special class methods. (see language limitations).
Pyscript provides a handful of additional built-in functions that connect to HASS features, like logging, accessing
state variables as strings (if you need to compute their names dynamically), running and managing tasks, sleeping and
waiting for triggers.

Pyscript also provides a kernel that interfaces with the Jupyter front-ends (eg, notebook, console, lab and VSC). That
allows you to develop and test pyscript code interactively. Plus you can interact with much of HASS by looking at
state variables, calling services etc, in a similar way to HASS CLI, although the CLI provides status on many other
parts of HASS.

3

reference.html#language-limitations
https://github.com/home-assistant-ecosystem/home-assistant-cli

hacs-pyscript, Release 1.5.0

For more information about the Jupyter kernel, see the README. There is also a Jupyter notebook tutorial, which can
be downloaded and run interactively in Jupyter notebook or VSC connected to your live HASS with pyscript.

Pyscript provides functionality that complements the existing automations, templates and triggers. Pyscript is most
similar to AppDaemon, and some similarities and differences are discussed in this Wiki page. Pyscript with Jupyter
makes it extremely easy to learn, use and debug. Pyscripts presents a simplified and more integrated binding for
Python scripting than Python Scripts, which requires a lot more expertise and scaffolding using direct access to Home
Assistant internals.

1.2 Installation

1.2.1 Option 1: HACS

Under HACS -> Integrations, select “+”, search for pyscript and install it.

1.2.2 Option 2: Manual

From the latest release download the zip file hass-custom-pyscript.zip

cd YOUR_HASS_CONFIG_DIRECTORY # same place as configuration.yaml
mkdir -p custom_components/pyscript
cd custom_components/pyscript
unzip hass-custom-pyscript.zip

Alternatively, you can install the current GitHub master version by cloning and copying:

mkdir SOME_LOCAL_WORKSPACE
cd SOME_LOCAL_WORKSPACE
git clone https://github.com/custom-components/pyscript.git
mkdir -p YOUR_HASS_CONFIG_DIRECTORY/custom_components
cp -pr pyscript/custom_components/pyscript YOUR_HASS_CONFIG_DIRECTORY/custom_
→˓components

1.2.3 Install Jupyter Kernel

Installing the Pyscript Jupyter kernel is optional but highly recommended. The steps to install and use it are in this
README.

1.3 Configuration

• Pyscript can be configured using the UI, or via yaml. To use the UI, go to the Configuration -> Integrations page
and selection “+” to add Pyscript Python scripting. After that, you can change the settings anytime
by selecting Options under Pyscript in the Configuration page.

Alternatively, for yaml configuration, add pyscript: to <config>/configuration.yaml. Pyscript
has two optional configuration parameters that allow any python package to be imported and exposes the hass
variable as a global (both options default to false):

pyscript:
allow_all_imports: true
hass_is_global: true

4 Chapter 1. Contents

https://github.com/craigbarratt/hass-pyscript-jupyter/blob/master/README.md
https://nbviewer.jupyter.org/github/craigbarratt/hass-pyscript-jupyter/blob/master/pyscript_tutorial.ipynb
https://appdaemon.readthedocs.io/en/latest/
https://github.com/custom-components/pyscript/wiki/Comparing-Pyscript-to-AppDaemon
https://www.home-assistant.io/integrations/python_script
https://github.com/custom-components/pyscript/releases
https://github.com/craigbarratt/hass-pyscript-jupyter/blob/master/README.md

hacs-pyscript, Release 1.5.0

• Add files with a suffix of .py in the folder <config>/pyscript.

• Restart HASS after installing pyscript.

• Whenever you change a script file or app, pyscript will automatically reload the changed files. To reload all files
and apps, call the pyscript.reload service with the optional global_ctx parameter to *.

• Watch the HASS log for pyscript errors and logger output from your scripts.

1.4 Tutorial

1.4.1 Jupyter Tutorial

The best way to learn about pyscript is to interactively step through the Jupyter tutorial. After you have installed the
pyscript Jupyter kernel, the tutorial can be downloaded with:

wget https://github.com/craigbarratt/hass-pyscript-jupyter/raw/master/pyscript_
→˓tutorial.ipynb

and open it with:

jupyter notebook pyscript_tutorial.ipynb

You can step through each command by hitting <Shift>Enter. There are various ways to navigate and run cells in
Jupyter that you can read in the Jupyter documentation.

1.4.2 Writing your first script

Create a file example.py in the <config>/pyscript folder (you can use any file name, so long as it ends in
.py) that contains:

@service
def hello_world(action=None, id=None):

"""hello_world example using pyscript."""
log.info(f"hello world: got action {action} id {id}")
if action == "turn_on" and id is not None:

light.turn_on(entity_id=id, brightness=255)
elif action == "fire" and id is not None:

event.fire(id, param1=12, pararm2=80)

After starting Home Assistant, use the Service tab in the Developer Tools page to call the service pyscript.
hello_world with parameters

action: hello
id: world

The function decorator @service means pyscript.hello_world is registered as a service. The expected
service parameters are keyword arguments to the function. This function prints a log message showing the action
and id that the service was called with. Then, if the action is "turn_on" and the id is specified, the light.
turn_on service is called. Otherwise, if the action is "fire" then an event type with that id is fired with the
given parameters. You can experiment by calling the service with different parameters. (Of course, it doesn’t make
much sense to have a function that either does nothing, calls another service, or fires an event, but, hey, this is just an
example.)

1.4. Tutorial 5

https://nbviewer.jupyter.org/github/craigbarratt/hass-pyscript-jupyter/blob/master/pyscript_tutorial.ipynb

hacs-pyscript, Release 1.5.0

Note: You’ll need to look at the log messages to see the output (unless you are using Jupyter, in which case all log
messages will be displayed, independent of the log setting). The log message won’t be visible unless the Logger is
enabled at least for level info, for example:

logger:
default: info
logs:
custom_components.pyscript: info

1.4.3 An example using triggers

Here’s another example:

@state_trigger("security.rear_motion == '1' or security.side_motion == '1'")
@time_active("range(sunset - 20min, sunrise + 15min)")
def motion_light_rear():

"""Turn on rear light for 5 minutes when there is motion and it's dark"""
log.info(f"triggered; turning on the light")
light.turn_on(entity_id="light.outside_rear", brightness=255)
task.sleep(300)
light.turn_off(entity_id="light.outside_rear")

This introduces two new function decorators

• @state_trigger describes the condition(s) that trigger the function (the other two trigger types are
@time_trigger and @event_trigger, which we’ll describe below). This condition is evaluated each
time the variables it refers to change, and if it evaluates to True or non-zero then the trigger occurs.

• @time_active describes a time range that is checked whenever a potential trigger occurs. The Python func-
tion is only executed if the @time_active criteria is met. In this example the time range is from 20 minutes
before sunset to 15 minutes after sunrise, ie: from dusk to dawn. Whenever the trigger is True and the active
conditions are met, the function is executed as a new task. The trigger logic doesn’t wait for the function to
finish; it goes right back to checking for the next condition. The function turns on the rear outside light, waits
for 5 minutes, and then turns it off.

However, this example has a problem. During those 5 minutes, any additional motion event will cause another instance
of the function to be executed. You might have dozens of them running, which is perfectly ok for pyscript, but
probably not the behavior you want, since as each earlier one finishes the light will be turned off, which could be much
less than 5 minutes after the most recent motion event.

There is a special function provided to ensure just one function uniquely handles a task, if that’s the behavior you
prefer. Here’s the improved example:

@state_trigger("security.rear_motion == '1' or security.side_motion == '1'")
@time_active("range(sunset - 20min, sunrise + 20min)")
def motion_light_rear():

"""Turn on rear light for 5 minutes when there is motion and it's dark"""
task.unique("motion_light_rear")
log.info(f"triggered; turning on the light")
light.turn_on(entity_id="light.outside_rear", brightness=255)
task.sleep(300)
light.turn_off(entity_id="light.outside_rear")

The task.unique function will terminate any task that previously called task.
unique("motion_light_rear"), and our instance will survive. (The function takes a 2nd argument

6 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

that causes the opposite to happen: the older task survives and we are terminated - so long!)

As before, this example will turn on the light for 5 minutes, but when there is a new motion event, the old function
(which is part way through waiting for 5 minutes) is terminated, and we start another 5 minute timer. The effect is the
light will stay on for 5 minutes after the last motion event, and stays on until there are no motion events for at least 5
minutes. If instead the second argument to task.unique is set, that means the new task is terminated instead. The
result is that the light will go on for 5 minutes following a motion event, and any new motion events during that time
will be ignored, since each new triggered function will be terminated. Depending on your application, either behavior
might be preferred.

There are some other improvements we could make. We could check if the light is already on so we don’t have to turn
it on again, by checking the relevant state variable:

@state_trigger("security.rear_motion == '1' or security.side_motion == '1'")
@time_active("range(sunset - 20min, sunrise + 20min)")
def motion_light_rear():

"""Turn on rear light for 5 minutes when there is motion and it's dark"""
task.unique("motion_light_rear")
log.info(f"triggered; turning on the light")
if light.outside_rear != "on":

light.turn_on(entity_id="light.outside_rear", brightness=255)
task.sleep(300)
light.turn_off(entity_id="light.outside_rear")

You could also create another function that calls task.unique("motion_light_rear") if the light is man-
ually turned on (by doing a @state_trigger on the relevant state variable), so that the motion logic is stopped
when there is a manual event that you want to override the motion logic.

We’ve introduced some of the main features. Now for some more formal descriptions of the decorators and the handful
of extra built-in functions available.

1.5 Reference

1.5.1 Configuration

Pyscript can be configured using the UI, or via yaml. To use the UI, go to the Configuration -> Integrations page and
select “+” to add Pyscript Python scripting. After that, you can change the settings anytime by selecting
“Options” under Pyscript in the Configuration -> Integrations page. You will need to select “reload” under Pyscript,
or call the pyscript.reload service for the new settings to take effect.

Alternatively, for yaml configuration, add pyscript: to <config>/configuration.yaml. You can’t mix
these two methods - your initial choice determines how you should update these settings later. If you want to switch
configuration methods you will need to uninstall and reinstall pyscript.

Pyscript has two optional configuration parameters that allow any python package to be imported and exposes the
hass variable as a global (both options default to false). Assuming you didn’t use the UI to configure pyscript,
these can be set in <config>/configuration.yaml:

pyscript:
allow_all_imports: true
hass_is_global: true

It is recommended you put your pyscript configuration its own yaml file in the pyscript folder. That way changes
to that file will be automatically detected and will trigger a reload, which includes rereading the configuration param-
eters:

1.5. Reference 7

hacs-pyscript, Release 1.5.0

pyscript: !include pyscript/config.yaml

The settings and behavior of your code can be controlled by additional user-defined yaml configuration settings. If
you configured pyscript using the UI flow, you can still add additional configuration settings via yaml. Since they are
free-form (no fixed schema) there is no UI configuration available for these additional settings.

Each application should have its configuration stored using the application’s name under an apps entry. For example,
applications my_app1 and my_app2 would be configured as:

pyscript:
allow_all_imports: true
apps:
my_app1:

any settings for my_app1 go here
my_app2:

any settings for my_app2 go here

If the include above is used, the pyscript/config.yaml would look like:

allow_all_imports: true
apps:

my_app1:
any settings for my_app1 go here

my_app2:
any settings for my_app2 go here

The apps section could also include other configuration files if you prefer to put each application’s configuration in
its own file.

An application will not be loaded unless it has a configuration entry (even if it is empty). That provides an easy was
to enable or disable an application.

An application’s configuration (eg, all the settings below my_app1 in the example above) are available in the vari-
able pyscript.app_config in the global scope of the application’s main file (eg, apps/my_app1.py or
apps/my_app1/__init__.py). Additionally, all the pyscript configuration settings are available via the vari-
able pyscript.config, which also includes all the application configuration below the apps key. However, in a
future release the apps entry will be removed so that apps do not have access to another app’s configuration (which
might include token, passwords or keys). See this section for more information. Note that pyscript.app_config
is not defined in regular scripts - only in each application’s main file.

Note that if you used the UI flow to configure pyscript, the allow_all_imports and hass_is_global con-
figuration settings will be ignored in the yaml file. In that case you should omit them from the yaml, and just use yaml
for pyscript app configuration.

At startup, pyscript loads the following files. It also automatically unloads and reloads files when they are changed,
renamed, created or deleted:

<config>/pyscript/*.py all files with a .py suffix in the top-level directory are autoloaded.

<config>/pyscript/scripts/**/*.py all files with a .py suffix below the scripts directory, recur-
sively to any depth, are autoloaded. This is useful for organizing your scripts into subdirectories that are related
in some way.

<config>/pyscript/apps/<app_name>/__init__.py every __init__.py file in a subdirectory in
the apps subdirectory is autoloaded, provided app_name exists in the pyscript yaml configuration under
apps. This package form is most convenient for sharing pyscript code, since all the files for one application are
stored in their own directory.

<config>/pyscript/apps/<app_name>.py all files in the apps subdirectory with a .py suffix are au-
toloaded, unless the package form above was loaded instead, and provided app_name exists in the pyscript

8 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

yaml configuration under apps (that allows each app to be disabled by simply removing its configuration and
reloading).

The idea is that the top-level directory pyscript and pyscript/scripts are for your own use (and are always
loaded), and pyscript/apps/ is for things you’ve gotten from others or things you’ve written with the intent to
reuse or share (and only are loaded if there is a configuration entry, which can be empty).

Any file name that starts with # is not loaded, and similarly scripts anywhere below a directory name that starts with
#, are not loaded. That’s a convenient way to disable a specific script or entire directory below scripts - you can
simply rename it with or without the leading # to disable or enable it, which automatically triggers a reload. Think of
it as “commenting” the file name, rather than having to delete it or move it outside the pyscript directory.

Like regular Python, functions within one source file can call each other, and can share global variables (if necessary),
but just within that one file. Each file has its own separate global context. Each Jupyter session also has its own
separate global context, so functions, triggers, variables and services defined in each interactive session are isolated
from the script files and other Jupyter sessions. Pyscript provides some utility functions to switch global contexts,
which allows an interactive Jupyter session to interact directly with functions and global variables created by a script
file, or even another Jupyter session.

The optional <config>/pyscript/modules subdirectory can contain modules (files with a .py extension) or
packages (directories that contain at least a __init__.py file) that can be imported by any other pyscript files,
applications or modules. The module form is ignored if the package form is present. They are not autoloaded.
Any modules or packages in <config>/pyscript/modules that are modified will be unloaded when they are
modified, and any scripts or apps that depend on those modules will be reloaded. Importing modules and packages
from <config>/pyscript/modules are not restricted if allow_all_imports is False. Typically com-
mon functions or features would be implemented in a module or package, and then imported and used by scripts in
<config>/pyscript or applications in <config>/pyscript/apps.

Even if you can’t directly call one function from another script file, HASS state variables are global and services can
be called from any script file.

1.5.2 Reloading Scripts

Manually reloading scripts via the pyscript.reload service is no longer necessary starting in 1.2.0, since changes
are automatically detected and a reload is triggered.

By default, calling the reload service only reloads scripts, apps or modules that have changed since they were last
loaded. A change means the script, app or module file contents or modification time has changed. Additionally, an
app is considered changed if its yaml configuration has changed. When a change is detected, additional files are also
reloaded if they depend on a changed file. Additional files include all other files in a particular module or app (meaning
the entire module or app is reloaded if any of its files or imports are changed), and if a module has changed, any other
module, app or script that imports that module directly or indirectly is reloaded too.

A file is also considered changed if it is newly created or deleted (or “commented” by renaming it or a parent directory
to start with #). When reload detects a deleted file, the prior global context and all its triggers are deleted, just as when
a file has changed.

If you want to reload a specific script or file, you can touch it to change its modification time. Alternatively, the
pyscript.reload service takes an optional parameter global_ctx which specifies the name of a specific
global context to reload. That is the one file considered to be changed by reload, and other changes are ignored.
For example, specifying file.example will just reload example.py, and apps.my_app1 will just reload
apps/my_app1.py. See the Global Context section for the mapping of file or app names to global context names.
Additional files might still be reloaded too (all other files in the module or app, and any modules, apps or scripts that
import a module if global_ctx was set to a module).

If you want to manually reload all scripts, apps and modules, set global_ctx to * when you call pyscript.
reload. Alternatively, the Reload option under pyscript in the in the Configuration -> Integrations page will
always do a full reload.

1.5. Reference 9

hacs-pyscript, Release 1.5.0

Any function definitions, services and triggers in the reloaded files are re-created. Jupyter sessions are not affected.
Any currently running functions (ie, functions that have been triggered and are actively executing Python code or
waiting inside task.sleep() or task.wait_until()) are not stopped on reload - they continue to run until
they finish (return). You can terminate these running functions too on reload if you wish by calling task.unique()
in the script file preamble (ie, outside any function definition), so it is executed on load and reload, which will terminate
any running functions that have previously called task.unique() with the same argument.

1.5.3 State Variables

These are typically called entities or entity_id in HASS.

State variables can be accessed in any Python code simply by name. State variables (also called entity_id) are of
the form DOMAIN.name, where DOMAIN is typically the name of the component that sets that variable. You can set
a state variable by assigning to it.

State variables only have string values, so you will need to convert them to int or float if you need their numeric
value.

State variables have attributes that can be accessed by adding the name of the attribute, as in DOMAIN.name.attr.
The attribute names and their meaning depend on the component that sets them, so you will need to look at the State
tab in the Developer Tools to see the available attributes. You can set an attribute directly by assigning DOMAIN.
name.attr = value.

In cases where you need to compute the name of the state variable dynamically, or you need to set or get all the state
attributes, you can use the built-in functions state.get(), state.getattr(), state.set() and state.
setattr(); see State Functions.

The function state.names(domain=None) returns a list of all state variable names (ie, entity_ids) of a
domain. If domain is not specified, it returns all HASS state variable (entity) names.

Also, service names (which are called as functions) take priority over state variable names, so if a component has a
state variable name that collides with one of its services, you’ll need to use state.get(name) to access that state
variable.

Accessing state variables that don’t exist will throw a NameError exception, and accessing an attribute that doesn’t
exist will throw a AttributeError exception. One exception (!) to this is that in a @state_trigger expres-
sion, undefined state variables and attributes will evaluate to None instead of throwing an exception.

You can assign a state variable (or the return value of state.get()) to a normal Python variable, and that variable
will capture the value and attributes of the state variable at the time of the assignment. So, for example, after this
assignment:

test1_state = binary_sensor.test1

the variable test1_state captures both the value and attributes of binary_sensor.test1. Later, if
binary_sensor.test1 changes, test1_state continues to represent the previous value and attributes at the
time of the assignment.

State variables also support virtual methods that are service calls with that entity_id. For any state variable
DOMAIN.ENTITY, any services registered by DOMAIN, eg: DOMAIN.SERVICE, that have an entity_id param-
eter can be called as a method DOMAIN.ENTITY.SERVICE(). Each of these statements are equivalent:

service.call("DOMAIN", "SERVICE", entity_id="DOMAIN.ENTITY", other_param=123)
DOMAIN.SERVICE(entity_id="DOMAIN.ENTITY", other_param=123)
DOMAIN.ENTITY.SERVICE(other_param=123)

10 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

In the case the service has only one other parameter in addition to entity_id, a further shorthand is that the method
can be called with just a positional, rather than keyword, argument. So if the service only takes two parameters,
entity_id and other_param, this additional form is equivalent to each of the above statements:

DOMAIN.ENTITY.SERVICE(123)

Here’s an example using input_number, assuming it has been configured to create an entity input_number.
test. These statements all do the same thing (and the last one works because set_value only takes one other
parameter):

service.call("input_number", "set_value", entity_id="input_number.test", value=13)
input_number.set_value(entity_id="input_number.test", value=13)
input_number.test.set_value(value=13)
input_number.test.set_value(13)

Two additional virtual attribute values are available when you use a variable directly as DOMAIN.entity.attr or
call state.get("DOMAIN.entity.attr"):

• last_changed is the last UTC time the state value was changed (not the attributes)

• last_updated is the last UTC time the state entity was updated

If you need to compute how many seconds ago the binary_sensor.test1 state changed, you could do this:

from datetime import datetime as dt
from datetime import timezone as timezone

num_seconds_ago = (dt.now(tz=timezone.utc) - binary_sensor.test1.last_changed).total_
→˓seconds()

Note that these virtual attributes and methods take precedence over any entity attributes that have the same name. If
an entity has attributes with those names and you need to access them, use state.getattr(name).

1.5.4 Calling services

Any service can be called by using the service name as a function, with keyword parameters to specify the service
parameters. You’ll need to look up the service in the Service tab of Developer Tools to find the exact name and
parameters. For example, inside any function you can call:

myservice.flash_light(light_name="front", light_color="red")

which calls the myservice.flash_light service with the indicated parameters. Obviously those parameter
values could be any Python expression, and this call could be inside a loop, an if statement or any other Python code.

Starting in HASS 2023.7, services can return a response, which is a dictionary of values. You need to set the keyword
parameter return_response=True to get the response. For example:

service_response = myservice.flash_light(light_name="front", light_color="red",
→˓return_response=True)

The function service.call(domain, name, **kwargs) can also be used to call a service when you need
to compute the domain or service name dynamically. For example, the above service could also be called by:

service.call("myservice", "flash_light", light_name="front", light_color="red")

When making a service call, either using the service.call function or the service name as the function, you can
optionally pass the keyword argument blocking=True if you would like to wait for the service to finish execution

1.5. Reference 11

hacs-pyscript, Release 1.5.0

before continuing execution in your function. If the service returns a response (new feature starting in HASS 2023.7),
it will be returned by the call if you set the optional keyword parameter return_response=True.

1.5.5 Firing events

Any event can be triggered by calling event.fire(event_type, **kwargs). It takes the event_type as
a first argument, and any keyword parameters as the event parameters. The event_type could be a user-defined
string, or it could be one of the built-in events. You can access the names of those built-in events by importing from
homeassistant.const, eg:

from homeassistant.const import EVENT_CALL_SERVICE

1.5.6 Function Trigger Decorators

There are four decorators for defining state, time, event and MQTT triggers, and two decorators for defining whether
any trigger actually causes the function to run (i.e., is active), based on state-based expressions or one or more time-
windows. The decorators should appear immediately before the function they refer to. A single function can have any
or all of the decorator types specified. Multiple trigger decorators of the same type can be added to a single function,
but only one @state_active, @time_active or @task_unique can be used per function.

A Python function with decorators is still a normal Python function that can be called by any other Python function.
The decorators have no effect in the case where you call it directly from another function.

@state_trigger

@state_trigger(str_expr, ..., state_hold=None, state_hold_false=None, state_check_
→˓now=False, kwargs=None, watch=None)

@state_trigger takes one or more string arguments that contain any expression based on one or more state
variables, and evaluates to True or False (or non-zero or zero). Whenever any of the state variables or attribute
values mentioned in the expression change (or specified via the watch argument), the expression is evaluated and the
trigger occurs if it evaluates to True (or non-zero). For each state variable, eg: domain.name, the prior value is
also available to the expression as domain.name.old in case you want to condition the trigger on the prior value
too. Attribute values can be used in the expression too, using the forms domain.name.attr and domain.name.
old.attr for the new and old attribute values respectively.

Multiple str_expr arguments are logically “or”ed together into a single expression. Any argument can alternatively
be a list or set of strings, and they are treated the same as multiple arguments by “or”ing them together. Alternatively,
independent state triggers can be specified by using multiple @state_trigger decorators.

Optional arguments are:

state_check_now=False If set, the @state_trigger expression is evaluated immediately when the trigger
function is defined (typically at startup), and the trigger occurs if the expression evaluates to True or non-zero.
Normally the expression is only evaluated when a state variable changes, and not when the trigger function is
first defined. This option is the same as in the task.wait_until function, except the default value is True
in that case. Note that if you specify state_check_now=True, entries in state_trigger that are plain
state variable names (which mean trigger on any change) are ignored during the initial check - only expressions
are checked.

state_hold=None A numeric duration in seconds that delays executing the trigger function for this amount of
time. If the state trigger expression changes back to False during that time, the trigger is canceled and a wait
for a new trigger begins. If the state trigger expression changes, but is still True then the state_hold time
is not restarted - the trigger will still occur that number of seconds after the first state trigger.

12 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

state_hold_false=None If set, the state trigger edge is triggered (triggers on a False to True transition),
versus the default of level triggered (triggers when True). The @state_trigger expression must evaluate
to False for this duration in seconds before the next trigger can occur. A value of 0 requires the expression
be False before a trigger, but with no minimum time in that state. If the expression evaluates to True
during the state_hold_false period, that trigger is ignored, and when the expression next is False the
state_hold_false period starts over.

For example, by default the expression "int(sensor.temp_outside) >= 50" will trigger every time
sensor.temp_outside changes to a value that is 50 or more. If instead state_hold_false=0, the
trigger will only occur when sensor.temp_outside changes the first time to 50 or more. It has to go back
below 50 for state_hold_false seconds before a new trigger can occur.

When state_hold_false is set, the state trigger expression is evaluated at startup. If False
the state_hold_false period begins. If True, a wait for the next False value begins. If
state_check_now is also set, the trigger will also occur at startup if the expression is True at startup,
while the state_hold_false logic will continue to wait until the expression is False for that period
before the next future trigger.

kwargs=None Additional keyword arguments can be passed to the trigger function by setting kwargs to a dict
of additional keywords and values. These will override the standard keyword arguments such as value or
var_name if you include those keywords in kwargs. A typical use for kwargs is if you have multiple
@state_trigger decorators on a single trigger function and you want to pass additional parameters (based
on the trigger, such as a setting or action) to the function. That could save several lines of code in the function
determining which trigger occurred.

watch=None Specifies a list or set of string state variable names (entity names) or state attributes that are moni-
tored for this trigger. When (and only when) a variable in this set changes, the trigger expression is evaluated.
Normally this set of names is automatically extracted from the @state_trigger expression, but there could
be cases where it doesn’t capture all the names (eg, if you have to use state.get() inside the trigger ex-
pression). You could also use watch to specify a subset of the names in the trigger expression, which has the
effect of rendering those other variables as only conditions in the trigger expression that won’t cause a trigger
themselves, since the expression won’t be evaluated when they change.

Here’s a summary of the trigger behavior with these parameter settings:

state_check_now state_hold_false trigger at start? trigger on state change?
default (False) default (None) no if expr True
default (False) 0 no if expr True, only after False
default (False) 10 no if expr True, only after False for 10 sec
True default (None) if expr True if expr True
True 0 if expr True if expr True, only after False
True 10 if expr True if expr True, only after False for 10 sec

If state_hold is also specified, all the entries in the table that say “if expr True” must remain True for that
number of seconds for the trigger to occur.

All state variables in HASS have string values. So you’ll have to do comparisons against string values or cast the
variable to an integer or float. These two examples are essentially equivalent (note the use of single quotes inside the
outer double quotes):

@state_trigger("domain.light_level == '255' or domain.light2_level == '0'")

@state_trigger("int(domain.light_level) == 255 or int(domain.light2_level) == 0")

although the second will throw an exception if the variable string doesn’t represent a valid integer. If you want
numerical inequalities you should use the second form, since string lexicographic ordering is not the same as numeric
ordering.

1.5. Reference 13

hacs-pyscript, Release 1.5.0

You can also use state variable attributes in the trigger expression, with an idenfitier of the form DOMAIN.name.
attr. Attributes maintain their original type, so there is no need to cast then to another type.

You can specify a state trigger on any change with a string that can take three forms:

• "domain.entity": triggers on any change to the state variable value

• "domain.entity.attr": triggers on any change to the state variable attribute attr value

• "domain.entity.*": triggers on any change to any state variable attribute (but not its value)

For example:

@state_trigger("domain.light_level")

will trigger any time the value of domain.light_level changes (not its attributes), which includes the cases
when that variable is first created (ie, the old_value is None) and when it is deleted (ie, the value is None).

If you use the “any change” form, there’s no point in also specifying state_hold since the expression is always
True whenever the state variable changes - there is no way for it to evaluate to False and to re-start the trigger
process. If you do specify state_hold in this case it will simply delay the trigger by the specified time.

The trigger can include arguments with any mixture of string expressions (that are evaluated when any of the underly-
ing state variables change) and string state variable or attribute names (that trigger whenever that variable or attribute
changes).

Note that if a state variable and attributes are set to the same value, HASS doesn’t generate a state change event, so
the @state_trigger condition will not be checked. It is only evaluated each time a state variable or any of its
attributes change to a new value.

When the trigger occurs and the function is executed (meaning any active checks passed too), keyword arguments
are passed to the function so it can tell which state variable caused it to succeed and run, in cases where the trigger
condition involves multiple variables. These are:

kwargs = {
"trigger_type": "state",
"var_name": var_name,
"value": new_value,
"old_value": old_value

}

The value and old_value represent the current and old values of the state variable var_name whose change
caused the trigger. Those variables include the state attributes too. If the trigger occurs when the state variable is
newly created, old_value will be None, and if the trigger occurs when a state variable is deleted, value will be
None.

Additional keyword parameters can be passed to the trigger function by setting the optional kwargs parameter to a
dict with the keyword/value pairs.

If your function needs to know any of these values, you can list the keyword arguments you need, with defaults:

@state_trigger("domain.light_level == '255' or domain.light2_level == '0'")
def light_turned_on(trigger_type=None, var_name=None, value=None):

pass

You don’t have to list all the default keyword parameters - just the ones your function needs. In contrast, if you specify
additional keyword parameters via kwargs, you will get an excepton if the function doesn’t have matching keyword
arguments (unless you use the **kwargs catch-all in the function definition).

Using trigger_type is helpful if you have multiple trigger decorators. The function can now tell which type of
trigger, and which of the two variables changed to cause the trigger. You can also use the keyword catch-all declaration
instead:

14 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

@state_trigger("domain.light_level == '255' or domain.light2_level == '0'")
def light_turned_on(**kwargs)

log.info(f"got arguments {kwargs}")

and all those values (including optional ones you specify with the kwargs argument to @state_trigger) will
simply get passed via kwargs as a dict. That’s the most useful form to use if you have multiple decorators, since
each one passes different variables into the function (although all of them set trigger_type).

If state_check_now is set to True and the trigger occurs during its immediate check, since there is no underlying
state variable change, the trigger function is called with only this argument:

kwargs = {
"trigger_type": "state",

}

If the trigger function uses var_name==None as a keyword argument, it can check if it is None to determine
whether it was called immediately or not. Similarly, if it uses the kwargs form, if can check if var_name is in
kwargs.

If state_hold is specified, the arguments to the trigger function reflect the variable change that cause the first trig-
ger, not any subsequent ones during the state_hold period. Also, if the @time_active or @state_active
decorators are used, they will be evaluated after the state_hold period, but with the initial trigger variable value
(ie, the value that caused the initial trigger).

Inside str_expr, undefined state variables, undefined state attributes, and undefined .old variables evaluate to
None, rather than throwing an exception. The .old variable will be None the first time the state variable is set (since
it has no prior value), and when the str_expr is being evaluated because a different state variable changed (only the
state variable change that caused str_expr to be evaluated gets its prior value in .old; any other .old variables
will be None for that evaluation).

@time_trigger

@time_trigger(time_spec, ..., kwargs=None)

@time_trigger takes one or more string specifications that specify time-based triggers. When multiple time trig-
gers are specified, each are evaluated, and the earliest one is the next trigger. Then the process repeats. Alternatively,
multiple time trigger specifications can be specified by using multiple @time_trigger decorators, although that is
less efficient than passing multiple arguments to a single one.

Additional keyword parameters can be passed to the trigger function by setting the optional kwargs parameter to a
dict with the keywords and values.

Several of the time specifications use a datetime format, which is ISO: yyyy/mm/dd hh:mm:ss, with the
following features:

• There is no time-zone (local is assumed).

• The date is optional, and the year can be omitted with just mm/dd.

• The date can also be replaced by a day of the week (either full like sunday or 3-letters like sun, in your local
language based on the locale; however, on Windows and other platforms that lack locale.nl_langinfo,
the days of week default to English).

• The meaning of partial or missing dates depends on the trigger, as explained below.

• The date and time can be replaced with now, which means the current date and time when the trigger was first
evaluated (eg, at startup or when created as an inner function or closure), and remains fixed for the lifetime of
the trigger.

1.5. Reference 15

hacs-pyscript, Release 1.5.0

• The time can instead be sunrise, sunset, noon or midnight.

• If the time is missing, midnight is assumed (so thursday is the same as thursday 00:00:00)

• Seconds are optional, and can include a decimal (fractional) portion if you need finer resolution.

• The datetime can be followed by an optional offset of the form
[+-]number{seconds|minutes|hours|days|weeks} with abbreviations:

– {s|sec|second|seconds} or empty for seconds,

– {m|min|mins|minute|minutes} for minutes,

– {h|hr|hour|hours} for hours,

– {d|day|days} for days,

– {w|week|weeks} for weeks.

That allows things like sunrise + 30m to mean 30 minutes after sunrise, or sunday sunset - 1.5
hour to mean 1.5 hours before sunset on Sundays. The number can be floating point. (Note, there is no i18n
support for those offset abbreviations - they are in English.)

In @time_trigger, each string specification time_spec can take one of five forms:

• "startup" triggers on HASS start and reload (ie, on function definition), and is equivalent to "once(now)"

• "shutdown" triggers on HASS shutdown and reload (ie, when the trigger function is no longer referenced)

• "once(datetime)" triggers once on the date and time. If the year is omitted, it triggers once per year on
the date and time (eg, birthday). If the date is just a day of week, it triggers once on that day of the week. If the
date is omitted, it triggers once each day at the indicated time. once(now + 5 min) means trigger once 5
minutes after startup.

• "period(datetime_start, interval, datetime_end)" or "period(datetime_start,
interval)" triggers every interval starting at the starting datetime and finishing at the optional ending
datetime. When there is no ending datetime, the periodic trigger runs forever. The interval has the form
number{sec|min|hours|days|weeks} (the same as datetime offset without the leading sign), and the
same abbreviations can be used. Period start and ends can also be based on now, for example period(now +
10m, 5min, now + 30min) will cause five triggers at 10, 15, 20, 25 and 30 minutes after startup.

• "cron(min hr dom mon dow)" triggers according to Linux-style crontab. Each of the five entries are
separated by spaces and correspond to minutes, hours, day-of-month, month, day-of-week (0 = sunday):

field allowed values
minute 0-59
hour 0-23
day of month 1-31
month 1-12
day of week 0-6 (0 is Sun)

Each field can be a * (which means “all”), a single number, a range or comma-separated list of numbers or
ranges (no spaces). Ranges are inclusive. For example, if you specify hours as 6,10-13 that means hours of
6,10,11,12,13. The trigger happens on the next minute, hour, day that matches the specification. See any Linux
documentation for examples and more details (note: names for days of week and months are not supported;
only their integer values are). The cron features use the croniter package, so check its documentation for
additional specification formats that are supported (eg: */5 repeats every 5th unit, days of week can be specified
with English abbreviations, and an optional 6th field allows seconds to be specified).

16 Chapter 1. Contents

https://pypi.org/project/croniter/

hacs-pyscript, Release 1.5.0

When the @time_trigger occurs and the function is called, the keyword argument trigger_type is set to
"time", and trigger_time is the exact datetime of the time specification that caused the trigger (it will be
slightly before the current time), or startup or shutdown in the case of a startup or shutdown trigger.

Additional optional keyword parameters can be specified in the kwargs parameter to @time_trigger.

A final special form of @time_trigger has no arguments, which causes the function to run once automatically on
startup or reload, which is the same as providing a single "startup" time specification:

@time_trigger
def run_on_startup_or_reload():

"""This function runs automatically once on startup or reload"""
pass

The function is not re-started after it returns, unless a reload occurs. Startup occurs when the
EVENT_HOMEASSISTANT_STARTED event is fired, which is after everything else is initialized and ready, so this
function can call any services etc. A startup trigger can also occur after HASS is started when a new trigger function
is defined (eg, on reload, defined at run-time using inner function/closure, or interactively in Jupyter).

Similarly, the shutdown trigger occurs when the EVENT_HOMEASSISTANT_STOP event is fired, meaning HASS
is shutting down. It also occurs whenever a trigger function is no longer referenced (meaning it’s being deleted),
which happens during reload or redefined interactively in Jupyter. It’s important that any trigger function based on
shutdown runs as quickly as possible, since the shutdown of HASS (or reload completion) will be stalled until your
function completes.

@event_trigger

@event_trigger(event_type, str_expr=None, kwargs=None)

@event_trigger triggers on the given event_type. Multiple @event_trigger decorators can be applied to
a single function if you want to trigger the same function with different event types.

An optional str_expr can be used to match the event data, and the trigger will only occur if that expression evaluates
to True or non-zero. This expression has available all the event parameters sent with the event, together with these
two variables:

• trigger_type is set to “event”

• event_type is the string event type, which will be the same as the first argument to @event_trigger

Note unlike state variables, the event data values are not forced to be strings, so typically that data has its native type.

When the @event_trigger occurs, those same variables are passed as keyword arguments to the function in case
it needs them. Additional keyword parameters can be specified by setting the optional kwargs argument to a dict
with the keywords and values.

The event_type could be a user-defined string, or it could be one of the built-in events. You can access the names
of those events by importing from homeassistant.const, eg:

from homeassistant.const import EVENT_CALL_SERVICE

To figure out what parameters are sent with an event and what objects (eg: list, dict) are used to represent them,
you can look at the HASS source code, or initially use the **kwargs argument to capture all the parameters and
log them. For example, you might want to trigger on certain service calls (not ones directed to pyscript), but you are
unsure which one and what parameters it has. So initially you trigger on all service calls just to see them:

1.5. Reference 17

hacs-pyscript, Release 1.5.0

from homeassistant.const import EVENT_CALL_SERVICE

@event_trigger(EVENT_CALL_SERVICE)
def monitor_service_calls(**kwargs):

log.info(f"got EVENT_CALL_SERVICE with kwargs={kwargs}")

After running that, you see that you are interested in the service call lights.turn_on, and you see that the
EVENT_CALL_SERVICE event has parameters domain set to lights and service set to turn_on, and the
service parameters are passed as a dict in service_data. So then you can narrow down the event trigger to that
particular service call:

from homeassistant.const import EVENT_CALL_SERVICE

@event_trigger(EVENT_CALL_SERVICE, "domain == 'lights' and service == 'turn_on'")
def monitor_light_turn_on_service(service_data=None):

log.info(f"lights.turn_on service called with service_data={service_data}")

This wiki page gives more examples of built-in and user events and how to create triggers for them.

@mqtt_trigger

@mqtt_trigger(topic, str_expr=None, kwargs=None)

@mqtt_trigger subscribes to the given MQTT topic and triggers whenever a message is received on that topic.
Multiple @mqtt_trigger decorators can be applied to a single function if you want to trigger off different mqtt
topics.

An optional str_expr can be used to match the MQTT message data, and the trigger will only occur if that expres-
sion evaluates to True or non-zero. This expression has available these four variables:

• trigger_type is set to “mqtt”

• topic is set to the topic the message was received on

• payload is set to the string payload of the message

• payload_obj if the payload was valid JSON, this will be set to the native python object representing that
payload.

• qos is set to the message QoS.

When the @mqtt_trigger occurs, those same variables are passed as keyword arguments to the function in case
it needs them. Additional keyword parameters can be specified by setting the optional kwargs argument to a dict
with the keywords and values.

Wildcards in topics are supported. The topic variables will be set to the full expanded topic the message arrived on.

NOTE: The MQTT Integration in Home Assistant must be set up to use @mqtt_trigger.

@state_active

@state_active(str_expr)

When any trigger occurs (whether time, state or event), the @state_active expression is evaluated. If it evaluates
to False (or zero), the trigger is ignored and the trigger function is not called. Only a single @state_active
decorator can be used per function - you can combine multiple conditions into str_expr using any, all, or logical
operators like or or and.

18 Chapter 1. Contents

https://github.com/custom-components/pyscript/wiki/Event-based-triggers
https://www.home-assistant.io/integrations/mqtt/

hacs-pyscript, Release 1.5.0

This decorator is roughly equivalent to starting the trigger function with an if statement with the str_expr (the
minor difference is that this decorator uses the @state_trigger variable value, if present, when evaluating
str_expr, whereas an if statement at the start of the function uses its current value, which might be different
if the state variable was changed immediately after the trigger, and the .old value is not available).

If the trigger was caused by @state_trigger, the prior value of the state variable that caused the trigger is available
to str_expr with a .old suffix.

Inside the str_expr, undefined state variables, undefined state attributes, and undefined .old variables evaluate to
None, rather than throwing an exception. Any .old variable will be None if the trigger is not a state trigger, if a
different state variable change caused the state trigger, or if the state variable that caused the trigger was set for the
first time (so there is no prior value).

@time_active

@time_active(time_spec, ..., hold_off=None)

@time_active takes zero or more strings that specify time-based ranges. Only a single @time_active decorator
can be used per function. When any trigger occurs (whether time, state or event), each time range specification is
checked. If the current time doesn’t fall within any range specified, the trigger is ignored and the trigger function is
not called. The optional numeric hold_off setting in seconds will ignore any triggers that are within that amount of
time from the last successful one. Think of this as making the trigger inactive for that number of seconds immediately
following each successful trigger. This can be used for rate-limiting trigger events or debouncing a noisy sensor.

Each string specification time_spec can take two forms:

• "range(datetime_start, datetime_end)" is satisfied if the current time is in the indicated range,
including the end points. As in @time_trigger, the year or date can be omitted to specify daily ranges. If
the end is prior to the start, the range is satisfied if the current time is either greater than or equal to the start
or less than or equal to the end. That allows a range like: @time_active("range(sunset - 20min,
sunrise + 15min)") to mean at least 20 minutes before sunset, or at least 15 minutes after sunrise (note:
at latitudes close to the polar circles, there can be cases where the sunset time is after midnight, so it is before
the sunrise time, so this might not work correctly; at even greater latitudes sunset and sunrise will not be defined
at all since there might not be daily sunrises or sunsets).

• "cron(min hr dom mon dow)" is satisfied if the current time matches the range specified by the cron
parameters. For example, if hr is 6-10 that means hours between 6 and 10 inclusive. If additionally min is *
(i.e., any), then that would mean a time interval from 6:00 to immediately prior to 11:00.

Each argument specification can optionally start with not, which inverts the meaning of that range or cron specifi-
cation. If you specify multiple arguments without not, they are logically or’ed together, meaning the active check
is true if any of the (positive) time ranges are met. If you have several not arguments, they are logically and’ed
together, so the active check will be true if the current time doesn’t match any of the “not” (negative) specifications.
@time_active allows multiple arguments with and without not. The condition will be met if the current time
matches any of the positive arguments, and none of the negative arguments.

1.5.7 Other Function Decorators

@pyscript_compile

By default in pyscript all functions are async, so they cannot be used in task.executor, as callbacks or methods
in python packages that expect regular functions, or used with built-in functions like filter, map or special class
methods that are called by python internals (eg, __getattr__ or __del__).

The @pyscript_compile decorator causes the function to be treated as native Python and compiled, which results
in a regular python function being defined, and it will run at full compiled speed. A lambda function is automatically

1.5. Reference 19

hacs-pyscript, Release 1.5.0

compiled so it behaves like a regular python lambda function (which means the lambda function body cannot contain
pyscript features).

For example:

@pyscript_compile
def incr(x):

return x + 1

x = list(map(incr, [0, 5, 10]))

sets x to [1, 6, 11].

One use for @pyscript_compile is to encapsulate functions that block (eg, doing I/O), so they can be called
from task.executor. This might be a more convenient way to create native python functions called by task.
executor, instead of moving them all to an external module or package outside of config/pyscript. This
example reads a file using a native compiled function called by task.executor:

@pyscript_compile
def read_file(file_name):

try:
with open(file_name, encoding="utf-8") as file_desc:

return file_desc.read(), None
except Exception as exc:

return None, exc

contents, exception = task.executor(read_file, "config/configuration.yaml")
if exception:

raise exception
log.info(f"contents = {contents}")

This is an experimental feature and might change in the future. Restrictions include:

• since it’s native python, the function cannot use any pyscript-specific features; but since it’s native python, all
language features are available, including open, yield etc

• if you use @pyscript_compile on an inner function (ie, defined inside a pyscript function), then binding
of variables defined outside the scope of the inner function does not work.

@pyscript_executor

The @pyscript_executor decorator does the same thing as @pyscript_compile and additionally wraps the
compiled function with a call to task.executor. The resulting function is now a pyscript (async) function that can
be called like any other pyscript function. This provides the cleanest way of defining a native python function that is
executed in a new thread each time it is called, which is required for functions that does I/O or otherwise might block.

The file reading example above is simplified with the use of @pyscript_executor:

@pyscript_executor
def read_file(file_name):

try:
with open(file_name, encoding="utf-8") as file_desc:

return file_desc.read(), None
except Exception as exc:

return None, exc

contents, exception = read_file("config/configuration.yaml")
if exception:

(continues on next page)

20 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

(continued from previous page)

raise exception
log.info(f"contents = {contents}")

Notice that read_file is called like a regular function, and it automatically calls task.executor, which runs the
compiled native python function in a new thread, and then returns the result.

@service(service_name, . . . , supports_response=”none”)

The @service decorator causes the function to be registered as a service so it can be called externally. The string
service_name argument is optional and defaults to "pyscript.FUNC_NAME", where FUNC_NAME is the name
of the function. You can override that default by specifying a string with a single period of the form "DOMAIN.
SERVICE". Multiple arguments and multiple @service decorators can be used to register multiple names (eg,
aliases) for the same function.

The supports_response keyword argument can be set to one of three string values: "none" (the default),
"only", or "optional", depending on whether the service provides no response, always provides a response, or
sometimes provides a response. Services responses were added in HASS 2023.7. The service response is a dictionary
returned by the function.

Other trigger decorators like @state_active and @time_active don’t affect the service. Those still allow state,
time or other triggers to be specified in addition.

The function is called with keyword parameters set to the service call parameters, plus trigger_type is set to
"service". The function definition should specify all the expected keyword arguments to match the service call
parameters, or use the **kwargs argument declaration to capture all the keyword arguments.

The doc_string (the string immediately after the function declaration) is used as the service description that ap-
pears is in the Services tab of the Developer Tools page. The function argument names are used as the service parameter
names, but there is no description.

Alternatively, if the doc_string starts with yaml, the rest of the string is used as a yaml service description.
Here’s the first example above, with a more detailed doc_string (for a more complete example and explanation of
the service description, check the Home Assistant developer documentation):

@service
def hello_world(action=None, id=None):

"""yaml
name: Service example
description: hello_world service example using pyscript.
fields:

action:
description: turn_on turns on the light, fire fires an event
example: turn_on
required: true
selector:

select:
options:

- turn_on
- fire

id:
description: id of light, or name of event to fire
example: kitchen.light
required: true
selector:

text:
"""

(continues on next page)

1.5. Reference 21

https://developers.home-assistant.io/docs/dev_101_services#service-descriptions

hacs-pyscript, Release 1.5.0

(continued from previous page)

log.info(f"hello world: got action {action}")
if action == "turn_on" and id is not None:

light.turn_on(entity_id=id, brightness=255)
elif action == "fire" and id is not None:

event.fire(id)

@task_unique

@task_unique(task_name, kill_me=False)

This decorator is equivalent to calling task.unique() at the start of the function when that function is triggered.
Like all the decorators, if the function is called directly from another Python function, this decorator has no effect. See
this section for more details.

1.5.8 Functions

Most of these have been mentioned already, but here is the complete list of additional functions made available by
pyscript.

Note that even though the function names contain a period, the left portion is not a class (e.g., state is not a class,
and in fact isn’t even defined). These are simply functions whose name includes a period. This is one aspect where
the interpreter behaves slightly differently from real Python.

However, if you set a variable like state, log or task to some value, then the functions defined with that prefix
will no longer be available, since the portion after the period will now be interpreted as a method or class function
acting on that variable. That’s the same behavior as Python - for example if you set bytes to some value, then the
bytes.fromhex() class method is no longer available in the current scope.

State variables

State variables can be used and set just by using them as normal Python variables. However, there could be cases
where you want to dynamically generate the variable name (eg, in a function or loop where the state variable name is
computed dynamically). These functions allow you to get and set a variable using its string name. The set function
also allows you to optionally set the attributes, which you can’t do if you are directly assigning to the variable:

state.delete(name) Deletes the given state variable or attribute. The Python del statement can also be used
to delete a state variable or attribute.

state.get(name) Returns the value of the state variable given its string name. A NameError exception is
thrown if the name doesn’t exist. If name is a string of the form DOMAIN.entity.attr then the attribute
attr of the state variable DOMAIN.entity is returned; an AttributeError exception is thrown if that
attribute doesn’t exist.

state.getattr(name) Returns a dict of attribute values for the state variable name string, or None if it
doesn’t exist. Alternatively, name can be a state variable. In pyscript prior to 1.0.0, this function was state.
get_attr(). That deprecated name is still supported, but it logs a warning message and will be removed in
a future version.

state.names(domain=None) Returns a list of all state variable names (ie, entity_ids) of a domain. If
domain is not specified, it returns all HASS state variable (entity_id) names.

state.persist(entity_id, default_value=None, default_attributes=None) Indicates
that the entity entity_id should be persisted. Optionally, a default value and default attributes (a dict)
can be specified, which are applied to the entity if it doesn’t exist or doesn’t have any attributes respectively.

22 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

“Persist” mean its value and attributes are preserved across HASS restarts. This only applies to entities in the
pyscript domain (ie, name starts with pyscript.). See this section for more information

state.set(name, value=None, new_attributes=None, **kwargs) Sets the state variable to the
given value, with the optional attributes. The optional 3rd argument, new_attributes, should be a dict
and it will overwrite all the existing attributes if specified. If instead attributes are specified using keyword
arguments, then just those attributes will be set and other attributes will not be affected. If no optional arguments
are provided, just the state variable value is set and the attributes are not changed. If no value is provided, just
the state attributes are set and the value isn’t changed. To clear all the attributes, set new_attributes={}.

state.setattr(name, value) Sets a state variable attribute to the given value. The name should fully spec-
ify the state variable and attribute as a string in the form DOMAIN.entity.attr.

Note that in HASS, all state variable values are coerced into strings. For example, if a state variable has a numeric
value, you might want to convert it to a numeric type (eg, using int() or float()). Attributes keep their native
type.

Service Calls

service.call(domain, name, blocking=False, return_response=False, **kwargs)
calls the service domain.name with the given keyword arguments as parameters. If blocking is True,
pyscript will wait for the service to finish executing before continuing the current routine. If the service returns
a response, set return_response to True (which also causes blocking), and the response will be returned
by the function call. Note that starting in HASS 2023.7, the blocking timeout parameter limit is no longer
supported.

service.has_service(domain, name) returns whether the service domain.name exists.

Event Firing

event.fire(event_type, **kwargs) sends an event with the given event_type string and the keyword
parameters as the event data.

Logging

Five logging functions are provided, with increasing levels of severity:

log.debug(str) log a message at debug level

log.info(str) log a message at info level

log.warning(str) log a message at warning level

log.error(str) log a message at error level

print(str) same as log.debug(str); currently print doesn’t support other arguments.

The Logger component can be used to specify the logging level. Log messages below the configured level will not
appear in the log. Each log message function uses a log name of the form:

custom_components.pyscript.file.SCRIPTNAME.FUNCNAME

where FUNCNAME is the name of the top-level Python function (e.g., the one called by a trigger or service), defined in
the script file SCRIPTNAME.py. See the Global Context section for the logging paths for other cases.

That allows you to set the log level for each Python top-level script or function separately if necessary. That setting
also applies to any other Python functions that the top-level Python function calls. For example, these settings:

1.5. Reference 23

hacs-pyscript, Release 1.5.0

logger:
default: info
logs:
custom_components.pyscript.file: info
custom_components.pyscript.file.my_script.my_function: debug

will log all messages at info or higher (ie: log.info(), log.warning() and log.error()), and inside
my_function defined in the script file my_script.py (and any other functions it calls) will log all messages at
debug or higher.

Note that in Jupyter, all the log functions will display output in your session, independent of the logger configura-
tion settings.

Changing the log level via the main configuration yaml file will typically require a restart of HASS. To avoid that, you
can set the log level for any specific logging path by calling the logger.set_level service from Jupyter, VSC,
or in a pyscript script; for example:

logger.set_level(**{"custom_components.pyscript.file.my_script": "debug"})

will change the log level for the my_script.py script to debug, while:

logger.set_level(**{"custom_components.pyscript.file.my_script.func1": "debug
→˓"})

will change the log level for the func1() function in my_script.py script to debug. You can change multiple
components in a single call just by adding them to the **kwargs dict.

Alternatively, you can use the Developer Tools to call the logger.set_level service with the logging path and
desired level as parameters.

Tasks

A task is a lightweight execution context that runs a function inside an event loop, effectively providing asynchronous
(actually collaborative serial) execution. They are part of Python’s asyncio package and are central to how HASS
and pyscript handle multiple activities. Tasks can run any Python code, provided it does not block (eg, for I/O) or run
without giving up control for too long (which will prevent other tasks from running).

Task Management

These functions allow new tasks to be created and managed. Normally you won’t need to create your own tasks, since
trigger functions automatically create a new task to run the function every time the trigger occurs.

task.create(func, *args, **kwargs) Creates a new task and calls the given function func with the
positional and keyword arguments. Returns the task id of the newly created task. The task id is an asyncio task
object, which supports several methods. The function func runs asynchronously until it returns or the task is
cancelled.

task.cancel(task_id=None) Cancels (kills) the task specified by the task_id returned by task.create.
This is a simpler alternative to the task_id.cancel() method, which also requires waiting for the task to
cancel. With no argument, task.cancel cancels the current task, which you might prefer to use in a trigger
function on error, instead of a return or raising an exception.

task.current_task() Returns the task id of the current task.

24 Chapter 1. Contents

https://www.home-assistant.io/docs/tools/dev-tools/
https://docs.python.org/3/library/asyncio-task.html#task-object

hacs-pyscript, Release 1.5.0

task.name2id(name=None) Returns the task id given a name that task previously passed to task.unique.
A NameError exception is raised if the task name is unknown. With no arguments it returns a dict mapping
all names to task ids. The names are specific to the current global context.

task.wait(task_set) Waits until the given set of tasks complete. This function calls asyncio.wait, so it
takes the same arguments. task_set is a set or list of task ids, and it returns two sets of done and pending
task ids. An example:

done, pending = task.wait({task_id1, task_id2})

This waits until both tasks complete, and sets done to {task_id1, task_id2} and pending to an empty
set (pending might be non-empty if you specify a timeout or return_when).

You can check if a task is done with task_id.done(). After a task has finished, the function’s return value
is available as task_id.result(), which raises an exception if the task is not finished or was cancelled.

task.add_done_callback(task_id, func, *args, **kwargs) This is a more convenient alterna-
tive to the task_id.add_done_callback method that supports both pyscript function (coroutine) and
regular function callbacks. The function func with the specified arguments is called when the task completes.
Multiple callbacks (with different functions) can be added to one task. If you use the same func argument it
replaces the prior callback for that function (ie, only one done callback per function is supported).

task.remove_done_callback(task_id, func) This is a more convenient alternative to the task_id.
remove_done_callback method that supports both pyscript function (coroutine) and regular function call-
backs. This removes a previously added done callback, and the callback to that function will no longer occur
when the task completes.

Task executor

If you call any Python functions that do I/O or otherwise block, they need to be run outside the main event loop using
task.executor:

task.executor(func, *args, **kwargs) Run the given function in a separate thread. The first argument
is the function to be called, followed by each of the positional or keyword arguments that function expects.
The func argument can only be a regular Python function (eg, defined in an imported module), not a function
defined in pyscript. task.executor waits for the function to complete in the other thread, and it returns the
return value from the function func.

See this section for more information.

Task sleep

task.sleep(seconds) sleeps for the indicated number of seconds, which can be floating point. Do not import
time and use time.sleep() - that will block lots of other activity.

Task unique

task.unique(task_name, kill_me=False) kills any currently running task that previously called task.
unique with the same task_name. The name can be any string. If kill_me=True then the current task is
killed if another task that is running previously called task.unique with the same task_name.

Note that task.unique is specific to the current global context, so names used in one global context will not affect
another.

1.5. Reference 25

hacs-pyscript, Release 1.5.0

Once a task calls task.unique with a name, that name can be used to look up the task id by name using task.
name2id. So even if task.unique is not used to kill a prior task, it can be used to associate that task with a name
which might be helpful if you need to manage specific tasks (eg, cancel them, wait for them to complete, or get their
return value when they finish).

A task can call task.unique multiple times with different names, which will kill any tasks that previously called
task.unique with each of those names. The task continues to “own” all of those names, so any one of them could
subsequently be used by a different task to kill the original task. Any of those names can be used to find the task id by
name using task.name2id.

task.unique can also be called outside a function, for example in the preamble of a script file or interactively
using Jupyter. That causes any currently running functions (ie, functions that have already been triggered and are
running Python code) that previously called task.uniquewith the same name to be terminated. Since any currently
running functions are not terminated on reload, this is the mechanism you can use should you wish to terminate
specific functions on reload. If used outside a function or interactively with Jupyter, calling task.unique with
kill_me=True causes task.unique to do nothing.

The task.unique functionality is also provided via a decorator @task_unique. If your function immediately
and always calls task.unique, you could choose instead to use the equivalent function decorator form.

Task waiting

task.wait_until(**kwargs) allows functions to wait for events, using identical syntax to the decorators.
This can be helpful if at some point during execution of some logic you want to wait for some additional
triggers.

It takes the following keyword arguments (all are optional):

• state_trigger=None can be set to a string just like @state_trigger, or it can be a list of strings that
are logically “or”ed together.

• time_trigger=None can be set to a string or list of strings with datetime specifications, just like
@time_trigger.

• event_trigger=None can be set to a string or list of two strings, just like @event_trigger. The first
string is the name of the event, and the second string (when the setting is a two-element list) is an expression
based on the event parameters.

• mqtt_trigger=None can be set to a string or list of two strings, just like @mqtt_trigger. The first string
is the MQTT topic, and the second string (when the setting is a two-element list) is an expression based on the
message variables.

• timeout=None an overall timeout in seconds, which can be floating point.

• state_check_now=True if set, task.wait_until() checks any state_trigger immediately to
see if it is already True, and will return immediately if so. If state_check_now=False, task.
wait_until() waits until a state variable change occurs, before checking the expression. Using
True is safer to help avoid race conditions, although False makes task.wait_until() behave like
@state_trigger, which by default doesn’t check at startup. However, if you use the default of True, and
your function will call task.wait_until() again, it’s recommended you set that state variable to some
other value immediately after task.wait_until() returns. Otherwise the next call will also return imme-
diately. Note that entries in state_trigger that are plain state variable names (which mean trigger on any
change) are ignored during this initial check; only expressions are evaluated.

• state_hold=None is an optional numeric duration is seconds. If specified, any state_trigger delays
returning for this amount of time. If the state trigger expression changes to False during that time, the trigger
is canceled and a wait for a new trigger begins. If the state trigger expression changes, but is still True then the
state_hold time is not restarted - task.wait_until() will return that number of seconds after the first

26 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

state trigger (unless a different trigger type or a timeout occurs first). This setting also applies to the initial
check when state_check_now=True.

• state_hold_false=None requires the expression evaluate to False for this duration in seconds before
a subsequent state trigger occurs. The default value of None means that the trigger can occur without the
trigger expression having to be False. A value of 0 requires the expression become False before the trigger,
but with no minimum time in that state. When state_hold_false is set, the state trigger expression is
evaluated immediately. If False the state_hold_false period begins. If True, a wait for the next
False value begins. If state_check_now is also set, task.wait_until()will still return immediately
if the expression is initially True.

When a trigger occurs, the return value is a dict containing the same keyword values that are passed into the function
when the corresponding decorator trigger occurs. There will always be a key trigger_type that will be set to:

• "state", "time" or "event" when each of those triggers occur.

• "timeout" if there is a timeout after timeout seconds (the dict has no other values)

• "none" if you specify only time_trigger and no timeout, and there is no future next time that satisfies
the trigger condition (e.g., a range or once is now in the past). Otherwise, task.wait_until() would
never return.

In the special case that state_check_now=True and task.wait_until() returns immediately, the other
return variables that capture the variable name and value that just caused the trigger are not included in the dict - it
will just contain trigger_type="state".

Here’s an example. Whenever a door is opened, we want to do something if the door closes within 30 seconds. If
a timeout of more than 30 seconds elapses (ie, the door is still open), we want to do some other action. We use a
decorator trigger when the door is opened, and we use task.wait_until to wait for either the door to close, or a
timeout of 30 seconds to elapse. The return value tells which of the two events happened:

@state_trigger("security.rear_door == 'open'")
def rear_door_open_too_long():

"""send alert if door is open for more than 30 seconds"""
trig_info = task.wait_until(

state_trigger="security.rear_door == 'closed'",
timeout=30

)
if trig_info["trigger_type"] == "timeout":

30 seconds elapsed without the door closing; do some actions
pass

else:
the door closed within 30 seconds; do some other actions
pass

task.wait_until() is logically equivalent to using the corresponding decorators, with some important differ-
ences. Consider these two alternatives, which each run some code whenever there is an event test_event3 with
parameters args == 20 and arg2 == 30:

@event_trigger("test_event3", "arg1 == 20 and arg2 == 30")
def process_test_event3(**trig_info):

do some things, including waiting a while
task.sleep(5)
do some more things

versus:

@time_trigger # empty @time_trigger means run the function on startup
def wait_for_then_process_test_event3():

(continues on next page)

1.5. Reference 27

hacs-pyscript, Release 1.5.0

(continued from previous page)

while 1:
trig_info = task.wait_until(

event_trigger=["test_event3", "arg1 == 20 and arg2 == 30"]
)

do some things, including waiting a while
task.sleep(5)
do some more things

Logically they are the similar, but the important differences are:

• task.wait_until() only looks for the trigger conditions when it is called, and it stops monitoring them
as soon as it returns. That means the trigger (especially an event trigger) could occur before or after task.
wait_until() is called, and you will miss the event. In contrast, the decorator triggers monitor the trigger
conditions continuously, so they will not miss state changes or events once they are initialized. The reason for
the state_check_now argument, and its default value of True is to help avoid this race condition for state
triggers. Time triggers should generally be safe.

• The decorators run each trigger function as a new independent task, and don’t wait for it to finish. So a func-
tion will be run for every matching event. In contrast, if your code runs for a while before calling task.
wait_until() again (e.g., task.sleep() or any code), or even if there is no other code in the while
loop, some events or state changes of interest will be potentially missed.

Summary: use trigger decorators whenever you can. Be especially cautious using task.wait_until() to wait for
events; you must make sure your logic is robust to missing events that happen before or after task.wait_until()
runs.

Global Context

Each pyscript file that is loaded, and each Jupyter session, runs inside its own global context, which means its global
variables and functions are isolated from each other (unless they are a module or package that is explicitly imported).
In normal use you don’t need to worry about global contexts. But for interactive debugging and development, you
might want your Jupyter session to access variables and functions defined in a script file.

Here is the naming convention for each file’s global context (upper case mean any value; lower case are actual fixed
names):

pyscript file path global context name
pyscript/FILE.py file.FILE
pyscript/modules/MODULE.py modules.MODULE
pyscript/modules/MODULE/__init__.py modules.MODULE
pyscript/modules/MODULE/FILE.py modules.MODULE.FILE
pyscript/apps/APP.py apps.APP
pyscript/apps/APP/__init__.py apps.APP
pyscript/apps/APP/FILE.py apps.APP.FILE
pyscript/scripts/FILE.py scripts.FILE
pyscript/scripts/DIR1/FILE.py scripts.DIR1.FILE
pyscript/scripts/DIR1/DIR2/FILE.py scripts.DIR1.DIR2.FILE

Note that if the package form of an app or module (pyscript/apps/APP/__init__.py or pyscript/
modules/MODULE/__init__.py) exists, the module form (pyscript/apps/APP.py or pyscript/
modules/MODULE.py) is ignored.

The logging path uses the global context name, so you can customize logging verbosity for each global context, to the
granularity of specific functions eg:

28 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

logger:
default: info
logs:
custom_components.pyscript.file: info
custom_components.pyscript.file.my_script.my_function: debug
custom_components.pyscript.apps.my_app: debug
custom_components.pyscript.apps.my_app.my_function: debug

Each Jupyter global context name is jupyter_NNN where NNN is a unique integer starting at 0.

You can set the log level for one or more logging paths by calling the logger.set_level service from Jupyter,
VSC, or in a pyscript script; for example:

logger.set_level(**{"custom_components.pyscript.file.my_script": "debug"})

will change the log level for the my_script.py script to debug.

When a script file has changed (or an app’s configuration has changed, provided the yaml file is below the pyscript
directory), a reload is triggered, and the corresponding global context whose names starts with file., modules.,
apps. or scripts. is removed. As each file is reloaded, the corresponding global context is created.

Three functions are provided for getting, setting and listing the global contexts. That allows you to interactively change
the global context during a Jupyter session. You could also use these functions in your script files, but that is strongly
discouraged because it violates the name space isolation among the script files. Here are the functions:

pyscript.get_global_ctx() returns the current global context name.

pyscript.list_global_ctx() lists all the global contexts, with the current global context listed first.

pyscript.set_global_ctx(new_ctx_name) sets the current global context to the given name.

When you exit a Jupyter session, its global context is deleted, which means any triggers, functions, services and
variables you created are deleted (HASS state variables survive). If you switch to a script file’s context, then any
triggers, functions, services or variables you interactively create there will persist after you exit the Jupyter session.
However, if you don’t update the corresponding script file, whenever the script is modified and automatically reloaded,
or upon HASS restart, those interactive changes will be lost, since reloading a script file recreates a new global context.

1.5.9 Advanced Topics

Workflow

Without Jupyter, the pyscript workflow involves editing scripts in the <config>/pyscript folder. Each time a
file is changed, it is automatically reloaded. You will need to look at the log file for error messages (eg, syntax errors),
or log output from your code.

If a module or app file (or any yaml files in the pyscript directory) has changed, all files in that module or app get
reloaded too, and also any other files that import that module. If you want to reload all the files, call the pyscript.
reload service with the optional parameter global_ctx set to *.

An excellent alternative to repeatedly modifying a script file is to use Jupyter notebook to interactively develop and
test functions, triggers and services.

Jupyter auto-completion (with <TAB>) is supported in Jupyter notebook, console and lab. It should work after you
have typed at least the first character. After you hit <TAB> you should see a list of potential completions from which
you can select. It’s a great way to easily see available state variables, functions or services.

In a Jupyter session, one or more functions can be defined in each code cell. Every time that cell is executed (eg,
<Shift>Return), those functions are redefined, and any existing trigger decorators with the same function name
are canceled and replaced by the new definition. You might have other function and trigger definitions in another

1.5. Reference 29

hacs-pyscript, Release 1.5.0

cell - they won’t be affected (assuming those function names are different), and they will only be replaced when you
re-execute that other cell.

When the Jupyter session is terminated, its global context is deleted, which means any trigger rules, functions, services
and variables you created are deleted. The pyscript Jupyter kernel is intended as an interactive sandbox. As you
finalize specific functions, triggers and automation logic, you should copy them to a pyscript script file, which will
automatically reloaded once that file is written. That ensures they will be loaded and run each time you re-start HASS.

If a function you define has been triggered and is currently executing Python code, then re-running the cell in which
the function is defined, or exiting the Jupyter session, will not stop or cancel the already running function. This is
the same behavior as reload. In pyscript, each triggered function (ie, a trigger has occurred, the trigger conditions are
met, and the function is actually executing Python code) runs as an independent task until it finishes. So if you are
testing triggers of a long-running function (eg, one that uses task.sleep() or task.wait_until()) you could
end up with many running instances. It’s strongly recommended that you use task.unique() to make sure old
running function tasks are terminated when a new one is triggered. Then you can manually call task.unique() to
terminate that last running function before exiting the Jupyter session.

If you switch global contexts to a script file’s context, and create some new variables, triggers, functions or services
there, then those objects will survive the termination of your Jupyter session. However, if you reload that script, those
newly-created objects will no longer exist. To make any additions or changes permanent (meaning they will be re-
created on each reload or each time your restart HASS) then you should copy the changes or additions to one of your
pyscript script files.

Importing

Pyscript supports importing two types of packages or modules:

• Pyscript code can be put into modules or packages and stored in the <config>/pyscript/modules folder.
Any pyscript code can import and use these modules or packages. These modules are not autoloaded on startup;
they are only loaded when another script imports them. Any changes to a module’s files will cause all of the
module files to be unloaded, and any scripts or apps that import that module will be reloaded. Imports of pyscript
modules and packages are not affected by the allow_all_imports setting - if a file is in the <config>/
pyscript/modules folder then it can be imported.

Package-style layout is also supported where a PACKAGE is defined in <config>/pyscript/modules/
PACKAGE/__init__.py, and that file can, in turn, do relative imports of other files in that same directory.
This form is most convenient for sharing useful pyscript libraries, since all the files for one package are stored
in its own directory.

• Installed Python packages can be imported. By default, pyscript only allows a short list of Python packages to
be imported, for both security reasons and to reduce the risk that package functions that block doing I/O are
called.

The rest of this section discusses the second style - importing installed Python modules and packages.

If you set the allow_all_imports configuration parameter, any available Python package can be imported. You
should be cautious about setting this if you are going to install community pyscript code without inspecting it, since it
could, for example, import os and call os.remove(). However, if you are developing your own code then there
is no issue with enabling all imports.

Pyscript code is run using an asynchronous interpreter, which allows it to run in the HASS main event loop. That
allows many of the “magic” features to be implemented without the user having to worry about the details. However,
the performance will be much slower that regular Python code, which is typically compiled. Any Python packages
you import will run at native, compiled speed.

So if you plan to run large chunks of code in pyscript without needing any of the pyscript-specific features, or you
want access to native Python features that aren’t supported in pyscript (like yield, open, read or write), you

30 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

might consider putting them in a package and importing it instead. That way it will run at native compiled speed and
have full access to the native Python language.

One way to do that is in one of your pyscript script files, add this code:

import sys

if "/config/pyscript_modules" not in sys.path:
sys.path.append("/config/pyscript_modules")

This adds the directory /config/pyscript_modules to Python’s module search path (you should use the correct
full path specific to your installation). You will need to set the allow_all_imports configuration parameter to
true to allow importing of sys. You can then add modules (files ending in .py) to that folder, which will contain
native python that is compiled when imported (note that none of the pyscript-specific features are available in those
modules).

Pyscript can install required Python packages if they are missing. Depending on how you run HASS (eg, using a
minimal Docker container) it might not be convenient to manually install Python packages using pip. If your pyscript
code requires particular Python packages that are not already installed by HASS, add a requirements.txt file
the <config>/pyscript directory. This file lists each required package one per line, with an optional version if
you require a specific version or minimum version of that package, eg:

this is a comment
aiohttp
amazing_stuff==3.1
another_package==5.1.2

When a specific version of a package is required, the == specifier must be used. Unpinned packages (no version
specified) are also accepted, but the highest pinned version will always take precedence when a package has been
specified as a requirement multiple times.

Each app’s or module’s directory (assuming they use the directory-form of a package) can also contain an optional
requirements.txt file:

• <config>/pyscript/modules/my-package-name/requirements.txt

• <config>/pyscript/apps/APP_NAME/requirements.txt

That allows you to specify the specific requirements for each pyscript module or app. If you release or share your
module or app, all its code and requirements are self-contained, and any user can simply install the files in that
directory and the requirements will be checked on the next start of HASS or reload.

If a required package version differs from the installed one, no change is made since it’s likely HASS has a requirement
that pyscript should not change. In that case a warning message will be logged and the requirement will be skipped.

Trigger Closures

Pyscript supports trigger functions that are defined as closures, ie: functions defined inside another function. This
allows you to easily create many similar trigger functions that might differ only in a couple of parameters (eg, a
common function in different rooms or for each media setup). The trigger will be stopped when the function is no
longer referenced in any scope. Typically the closure function is returned, and the return value is assigned to a variable.
If that variable is re-assigned or deleted, the trigger function will be destroyed.

Here’s an example:

def state_trigger_factory(sensor_name, trig_value):

@state_trigger(f"input_boolean.{sensor_name} == '{trig_value}'")

(continues on next page)

1.5. Reference 31

hacs-pyscript, Release 1.5.0

(continued from previous page)

def func_trig(value=None):
log.info(f"func_trig: {sensor_name} is {value}")

return func_trig

f1 = state_trigger_factory("test1", "on")
f2 = state_trigger_factory("test2", "on")
f3 = state_trigger_factory("test3", "on")

This creates three trigger functions that fire when the given sensor input_boolean.testN is on. If you re-assign
or delete f1 then that trigger will be destroyed, and the other two will not be affected. If you repeatedly re-run this
block of code in Jupyter the right thing will happen - each time it runs the old triggers are destroyed when the variables
are re-assigned.

Any data type could be used to maintain a reference to the trigger function. For example a list could be manually built:

input_boolean_test_triggers = [
state_trigger_factory("test1", "on"),
state_trigger_factory("test2", "on"),
state_trigger_factory("test3", "on")

]

or dynamically in a loop:

input_boolean_test_triggers = []
for i in range(1, 4):

input_boolean_test_triggers.append(state_trigger_factory(f"test{i}", "on"))

If you are writing a factory function and you prefer the caller not to bother with maintaining variables with the closure
functions, you could move the appending into the function and use a global variable (a class could also be used):

input_boolean_test_triggers = []

def state_trigger_factory(sensor_name, trig_value):

@state_trigger(f"input_boolean.{sensor_name} == '{trig_value}'")
def func_trig(value=None):

log.info(f"func_trig: {sensor_name} is {value}")

input_boolean_test_triggers.append(func_trig)

state_trigger_factory("test1", "on")
state_trigger_factory("test2", "on")
state_trigger_factory("test3", "on")

Notice there is no return value from the factory function.

A dict could be used instead of a list, with a key that combines the unique parameters of the trigger. That way a new
trigger with the same parameters will replace an old one when the dict entry is set, if that’s the behavior you want.

Accessing YAML Configuration

Pyscript binds all of its yaml configuration to the variable pyscript.config. That allows you to add config-
uration settings that can be processed by your pyscript code. Additionally, an application’s configuration (eg, for
an application app_name, all the settings in app_name below apps) are available in the variable pyscript.
app_config in the global scope of the application’s main file (eg, apps/app_name.py or apps/app_name/

32 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

__init__.py). Note that pyscript.app_config is not defined in regular scripts - only in each application’s
main file.

One motivation is to allow pyscript apps to be developed and shared that can instantiate triggers and logic based on
yaml configuration. That allows other users to use and configure your pyscript code without needing to edit or even
understand it - they just need to add the corresponding yaml configuration.

The configuration for an application should be placed below that application’s name under the apps configuration
key. For example, the settings for a pyscript application called auto_lights below an entry apps. That entry
could contain a list of settings (eg, for handling multiple rooms or locations).

Here’s an example yaml configuration with settings for two applications, auto_lights and motion_light:

pyscript:
allow_all_imports: true
apps:
auto_lights:

- room: living
level: 60
some_list:
- 1
- 20

- room: dining
level: 80
some_list:
- 1
- 20

motion_light:
- sensor: rear_left

light: rear_flood
- sensor: side_yard

light: side_flood
- sensor: front_patio

light: front_porch
global:
setting1: 10
setting2: true

For the auto_lights application, those settings are available to that application’s main source file (eg,
apps/auto_lights.py or apps/auto_lights/__init__.py) in the global variable pyscript.
app_config, which will be set to:

[
{"room": "living", "level": 60, "some_list": [1, 20]},
{"room": "dining", "level": 80, "some_list": [1, 20]},

],

The corresponding global pyscript.config variable value will be:

{
"allow_all_imports": True,
"apps": {

"auto_lights": [
{"room": "living", "level": 60, "some_list": [1, 20]},
{"room": "dining", "level": 80, "some_list": [1, 20]},

],
"motion_light": [

{"sensor": "rear_left", "light": "rear_flood"},

(continues on next page)

1.5. Reference 33

hacs-pyscript, Release 1.5.0

(continued from previous page)

{"sensor": "side_yard", "light": "side_flood"},
{"sensor": "front_patio", "light": "front_porch"},

],
},
"global": {

"setting1": 10,
"setting2": True,

},
}

Note that accessing pyscript.config["apps"] is deprecated. The apps entry will be removed in a future
release so that apps do not have access to another app’s configuration (which might include token, passwords or keys).

Your application code for auto_lights would be in either

• <config>/pyscript/apps/auto_lights.py

• <config>/pyscript/apps/auto_lights/__init__.py

It can simply iterate over pyscript.app_config settings up the necessary triggers and application logic, eg:

def setup_triggers(room=None, level=None, some_list=None):
#
define some trigger functions etc
#
pass

for inst in pyscript.app_config:
setup_triggers(**inst)

Validating the configuration can be done either manually or with the voluptuous package.

Secrets can also be bound to variables by substituting the value with !secret my_secret. This is useful for API
keys or passwords.

Here is an example config for service_checker which needs a name (not a secret) and a URL and an API key
(which are secret):

pyscript:
allow_all_imports: true
apps:
service_checker:

- service_name: my_service
url: !secret my_secret_url
api_key: !secret my_secret_api_key

Access to Hass

If the hass_is_global configuration setting is set (default is off), then the variable hass is available as a global
variable in all pyscript contexts. That provides significant flexibility in accessing HASS internals for cases where
pyscript doesn’t provide some binding or access.

Ideally you should only use hass for read-only access. However, you do need a good understanding of hass internals
and objects if you try to call functions or update anything. With great power comes great responsibility!

For example, you can access configuration settings like hass.config.latitude or hass.config.
time_zone.

34 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

You can use hass to compute sunrise and sunset times using the same method HASS does, eg:

import homeassistant.helpers.sun as sun
import datetime

location = sun.get_astral_location(hass)
sunrise = location[0].sunrise(datetime.datetime.today()).replace(tzinfo=None)
sunset = location[0].sunset(datetime.datetime.today()).replace(tzinfo=None)
print(f"today sunrise = {sunrise}, sunset = {sunset}")

(Note that the sun.sun attributes already provide times for the next sunrise and sunset, so this example is a bit
contrived. Also note this only applies to HA 2021.5 and later; prior to that, sun.get_astral_location()
doesn’t return the elevation, so replace location[0] with location in the two expressions if you have an older
version of HA.)

Here’s another method that uses the installed version of astral directly, rather than the HASS helper function. HA
2021.5 upgraded to astral 2.2, and here’s one way of getting sunrise using this version (prior to this HA used a
very old version of astral).

import astral
import astral.location
import datetime

here = astral.location.Location(astral.LocationInfo("City", "Country", str(hass.
→˓config.time_zone),

hass.config.latitude, hass.config.
→˓longitude))
sunrise = here.sunrise(datetime.datetime.today()).replace(tzinfo=None)
sunset = here.sunset(datetime.datetime.today()).replace(tzinfo=None)
print(f"today sunrise = {sunrise}, sunset = {sunset}")

If there are particular HASS internals that you think many pyscript users would find useful, consider making a feature
request or PR so it becomes a built-in feature in pyscript, rather than requiring users to always have to delve into hass.

Avoiding Event Loop I/O

All pyscript code runs in the HASS main event loop. That means if you execute code that blocks, for example doing
I/O like reading or writing files or fetching a URL, then the main loop in HASS will be blocked, which will delay all
other tasks.

All the built-in functionality in pyscript is written using asynchronous code, which runs seamlessly together with all
the other tasks in the main event loop. However, if you import Python packages and call functions that block (eg, file
or network I/O) then you need to run those functions outside the main event loop. That can be accomplished wrapping
those function calls with the task.executor function, which runs the function in a separate thread:

task.executor(func, *args, **kwargs) Run the given function in a separate thread. The first argument
is the function to be called, followed by each of the positional or keyword arguments that function expects. The
func argument can only be a regular Python function, not a function defined in pyscript.

If you forget to use task.executor, you might get this warning from HASS:

WARNING (MainThread) [homeassistant.util.async_] Detected I/O inside the event loop.
→˓This is
causing stability issues. Please report issue to the custom component author for
→˓pyscript doing
I/O at custom_components/pyscript/eval.py, line 1583: return func(*args, **kwargs)

1.5. Reference 35

hacs-pyscript, Release 1.5.0

Currently the built-in functions that do I/O, such as open, read and write are not supported to avoid I/O in the
main event loop, and also to avoid security issues if people share pyscripts. Also, the print function only logs a
message, rather than implements the real print features, such as specifying an output file handle. If you want to do
file I/O from pyscript, you have two choices:

• put the code in a separate native Python module, so that functions like open, read and write are available,
and call the function in that module from pyscript using task.executor. See Importing for how to set
Python’s sys.path to import a local Python module.

• you could use the os package (which can be imported by setting allow_all_imports) and calling the
low-level functions like os.open and os.read using task.executor to wrap every function.

Here’s an example fetching a URL. Inside pyscript, this is the wrong way since it does I/O without using a separate
thread:

import requests

url = "https://raw.githubusercontent.com/custom-components/pyscript/master/README.md"
resp = requests.get(url)

The correct way is:

import requests

url = "https://raw.githubusercontent.com/custom-components/pyscript/master/README.md"
resp = task.executor(requests.get, url)

An even better solution to fetch a URL is to use a Python package that uses asyncio, in which case there is no need for
task.executor. In this case, aiohttp can be used (the await keyword is optional in pyscript):

import aiohttp

url = "https://raw.githubusercontent.com/custom-components/pyscript/master/README.md"
async with aiohttp.ClientSession() as session:

async with session.get(url) as resp:
print(resp.status)
print(resp.text())

Here’s another example that creates a client connection to a TCP server and exchanges messages in a manner that
avoids event loop I/O by using asyncio.open_connection.

import asyncio

Reader, Writer = None, None

@time_trigger('startup')
def do_client_connection():

global Reader, Writer
Reader, Writer = asyncio.open_connection('127.0.0.1', 8956)

def client_send(message):
if not Writer:

raise("Client is not connected")
Writer.write(message.encode())
Writer.drain()
return Reader.readline().decode()

This connects to the server (in this example at 127.0.0.1:8956) at startup, and then you can call
client_send() and it will send the message and return the reply.

36 Chapter 1. Contents

hacs-pyscript, Release 1.5.0

This assumes the protocol is line-oriented; you could call Reader.read() instead if you want to read bytes instead
of expecting a newline with Reader.readline().

To test the code above, you can create a server by running nc -l 8956 before you run the code. When you call
client_send("hello\n") you should see the hello printed by nc. Then whatever you type back at nc will
be returned by client_send().

Persistent State

Pyscript has the ability to persist state variables in the pyscript. domain, meaning their values and attributes are
preserved across HASS restarts. To specify that the value of a particular entity persists, you need to request persistence
explicitly. This must be done in a code location that will be certain to run at startup.

state.persist('pyscript.last_light_on')

@state_trigger('binary_sensor.motion == "on"')
def turn_on_lights():
light.turn_on('light.overhead')
pyscript.last_light_on = "light.overhead"

With this in place, state.persist() will be called every time this script is parsed, ensuring the pyscript.
last_light_on state variable state will persist between HASS restarts. If state.persist is not called on a
particular state variable before HASS stops, then that state variable will not be preserved on the next start.

Language Limitations

Pyscript implements a Python interpreter in a fully-async manner, which means it can run safely in the main HASS
event loop.

The language coverage is relatively complete, but it’s quite possible there are discrepancies with Python in certain
cases. If so, please report them.

Here are some areas where pyscript differs from real Python:

• The pyscript-specific function names and state names that contain a period are treated as plain identifiers that
contain a period, rather than an attribute (to the right of the period) of an object (to the left of the period). For
example, while pyscript.reload and state.get are functions, pyscript and state aren’t defined.
However, if you set pyscript or state to some value (ie: assign them as a variable), then pyscript.
reload and state.get are now treated as accessing those attributes in the pyscript or state object,
rather than calls to the built-in functions, which are no longer available. That’s similar to regular Python, where
if you set bytes to some value, the bytes.fromhex function is no longer available.

• Since pyscript is async, it detects whether functions are real or async, and calls them in the correct manner. So
it’s not necessary to use async and await in pyscript code - they are optional.

• All pyscript functions are async. So if you call a Python module that takes a pyscript function as a callback
argument, that argument is an async function, not a normal function. So a Python module won’t be able to
call that pyscript function unless it uses await, which requires that function to be declared async. Unless
the Python module is designed to support async callbacks, it is not currently possible to have Python modules
and packages call pyscript functions. The workaround is to move your callbacks from pyscript and make them
native Python functions; see Importing.

• Continuing that point, special methods (eg, __eq__) in a class created in pyscript will not work since
they are async functions and Python will not be able to call them. The two workarounds are to use the
@pyscript_compile decorator so the method is compiled to a native (non-ascync) Python function, or
write your class in native Python and import it into pyscript; see Importing.

1.5. Reference 37

hacs-pyscript, Release 1.5.0

• The import function in pyscript fails to import certain complex packages. This is an open bug and it would
be great if someone with some Python expertise could help fix it. In the meantime, the workaround is to import
the module in a native Python file, and then import that shim module into pyscript. See Importing.

• pyscript and the HASS primitives that it uses are not thread safe - the code should only be executed in the
main event loop. The task.executor() function is one way that regular Python code (not pyscript code)
can safely be executed in a separate thread. The threading package can potentially be used (although that
is untested), so long as any threads created only run regular Python code (and not call any pyscript functions,
which are all async). Bad things will happen if you call pyscript functions from a thread you create; currently
there isn’t error checking for that case.

A handful of language features are not supported:

• generators and the yield statement; these are difficult to implement in an interpreter.

• built-in functions that do I/O, such as open, read and write are not supported to avoid I/O in the main event
loop, and also to avoid security issues if people share pyscripts. The print function only logs a message, rather
than implements the real print features, such as specifying an output file handle.

• The built-in function decorators (eg, state_trigger) aren’t functions that can be called and used in-line.
However, you can define your own function decorators that could include those decorators on the inner functions
they define. Currently none of Python’s built-in decorators are supported.

Pyscript can call Python modules and packages, so you can always write your own native Python code (eg, if you need
a generator or other unsupported feature) that can be called by pyscript (see Importing for how to create and import
native Python modules in pyscript).

1.6 Contributing

Contributions are welcome! You are encouraged to submit PRs, bug reports, feature requests or add to the Wiki with
examples and tutorials. It would be fun to hear about unique and clever applications you develop. Please see this
README for setting up a development environment and running tests.

Even if you aren’t a developer, please participate in our discussions community. Helping other users is another great
way to contribute to pyscript!

1.7 Releases and New Features

The releases and release notes are available on GitHub. Use HACS to install different versions of pyscript.

You can also install the master (head of tree) version from GitHub, either using HACS or manually. Because pyscript
has quite a few unit tests, generally the master version should work ok. But it’s not guaranteed to work at any random
time, and newly-added features might change.

This is 1.5.0, released on July 30, 2023. Here is the documentation for that release. Here is the stable documentation
for the latest release.

Over time, the master (head of tree) version in GitHub will include new features and bug fixes. Here is the latest
documentation if you want to see the development version of the documentation.

If you want to see development progress since 1.5.0, see new features in the latest documentation, or look at the
GitHub repository.

Planned new features post 1.5.0 include:

• Services defined in pyscript should support entity methods if they include an entity_id keyword argument.

38 Chapter 1. Contents

https://github.com/custom-components/pyscript/tree/master/tests
https://github.com/custom-components/pyscript/discussions
https://github.com/custom-components/pyscript/releases
https://hacs-pyscript.readthedocs.io/en/1.5.0
https://hacs-pyscript.readthedocs.io/en/stable
https://hacs-pyscript.readthedocs.io/en/latest
https://hacs-pyscript.readthedocs.io/en/latest
https://hacs-pyscript.readthedocs.io/en/latest/new_features.html
https://github.com/custom-components/pyscript

hacs-pyscript, Release 1.5.0

• Consider supporting the built-in functions that do I/O, such as open, read and write, which are not currently
supported to avoid I/O in the main event loop, and also to avoid security issues if people share pyscripts. The
print function only logs a message, rather than implements the real print features, such as specifying
an output file handle. Support might be added in the future using an executor job, perhaps enabled when
allow_all_imports is set.

The new features since 1.5.0 in master include:

None yet.

Breaking changes since 1.5.0 include:

None yet.

Bug fixes since 1.5.0 include:

None yet.

1.8 Useful Links

• Documentation stable: latest release

• Documentation latest: current master in GitHub

• Discussion and help: community support and discussion

• GitHub repository (please add a star if you like pyscript!)

• Release notes: see what’s changed

• Issues: report bugs or propose new features

• Wiki: share your pyscript apps and scripts

• Using Jupyter

• Jupyter notebook tutorial

1.8. Useful Links 39

https://hacs-pyscript.readthedocs.io/en/stable
https://hacs-pyscript.readthedocs.io/en/latest
https://github.com/custom-components/pyscript/discussions
https://github.com/custom-components/pyscript
https://github.com/custom-components/pyscript/releases
https://github.com/custom-components/pyscript/issues
https://github.com/custom-components/pyscript/wiki
https://github.com/craigbarratt/hass-pyscript-jupyter
https://nbviewer.jupyter.org/github/craigbarratt/hass-pyscript-jupyter/blob/master/pyscript_tutorial.ipynb

	Contents
	Overview
	Installation
	Option 1: HACS
	Option 2: Manual
	Install Jupyter Kernel

	Configuration
	Tutorial
	Jupyter Tutorial
	Writing your first script
	An example using triggers

	Reference
	Configuration
	Reloading Scripts
	State Variables
	Calling services
	Firing events
	Function Trigger Decorators
	Other Function Decorators
	Functions
	Advanced Topics

	Contributing
	Releases and New Features
	Useful Links

